Making conjectures is a fundamental reasoning habit in mathematical inquiry. Geometry offers many opportunities for developing this reasoning habit through an abundance of intriguing and often surprising visual or measurable geometric relationships. Students can make conjectures by analyzing a planar or spatial configuration or by wondering whether a certain configuration can exist. Conjecturing activates their natural inquisitiveness, not only about "what might be happening" (the conjecture) but "why it should be happening" (looking for insight, validation, or refutation.) The process of seeking and making conjectures gives students the opportunity to become immersed in, and deepen their understanding of, the mathematical relationships involved, as well as to sharpen their ability to validate them. By making conjectures about novel situations, students also learn to employ mathematics in new situations, a highly desirable skill in our fast-changing world.

NCTM, Focus in High School Mathematics: Reasoning and Sense Making

Our goal is to use varying teaching/learning strategies in order to meet the needs of all the students and the demands of the content. These strategies include, but are not limited to, the following:

Give students a new type of problem and have students arrive at solutions individually or in groups. Then share with group to collect all the different ways to solve a problem.

Present a new problem and think, pair, share.

Give students a new type of problem together with a worked out solution and have students discover and explain, in writing and verbally, how and why the solution works.

Direct instruction – Typically direct instruction will follow some exploratory time for students to play around with a new type of problem/situation/scenario. Students' brainstorming will be the start of direct instruction, with notes and examples and information that help students make sense of the new problem and place it in the context of prior knowledge.

Have students analyze a new problem: what about it looks familiar, what about it looks new, how could they start the problem or, if they can't start, what might be involved while attacking the problem. Students share ideas in writing and verbally.

Have students use technology (graphing calculators, Geometer's Sketchpad, Graphmatica, etc) to explore functions and mathematical concepts.

Have students reflect on their learning in writing and verbally. A regular class wrap up will include asking students to write what they learned in the day's work, what questions they still have, what it reminds them of from past work, and other associations they have with the new material.

Expose students to complex problems that involve many concepts and lend themselves to a variety of solutions and strategies. These could be problems that take anywhere from 15 minutes to an hour to multiple days to solve.

Instructional goals

Nurture an appreciation for the distinct nature of mathematics as an abstract language system that is internally consistent and understood through rigorous analytical thinking skills.

Nurture an appreciation for how the analytical thinking and problem solving skills honed in mathematics is essential for students' current and future lives regardless of whether they choose a mathematical or scientific field.

Wherever possible, tie the mathematical content to other fields such as economics, literature, all the sciences, psychology, politics, etc., so that students can see the relevance and use of mathematics in other contexts.

Nurture numeracy and statistical savvy so that students may be critical consumers of statistical information in their current and future lives.

A constant goal is to achieve depth of understanding and connection, despite a much too full list of topics prescribed by the State of New York.

Nurture mathematical reasoning and analytical skills and the ways to express one's reasoning, both verbally and in writing. We want to encourage students to look for and recognize patterns, internal structure, regularities or irregularities both in "real-world" problems and in the symbolic language of mathematics. We want students to see when patterns are meaningful as opposed to when they are by chance or accidental. We want students to justify their solutions and to see why those solutions make sense.

Assessment

We plan to use both formal and informal assessments to ascertain understanding. Assessments will also be both formative and summative.

Projects – research and writing projects, statistics projects that involve gathering and analyzing data, solving and explaining solutions to complex, multi-faceted problems

Tests and quizzes

Group work – group work allows the teacher to circulate and listen in, thus giving the teacher an idea of student understanding and misconceptions.

Written descriptions of solutions to problems – students will be asked to describe their process for solving a particular problem in writing, which will give the teacher an insight into student understanding of the method being assessed.

Homework

We hope to train students to make homework a productive, reflective process. Homework is a time to practice problem solving skills and thinking processes. By providing solutions, we hope to encourage students to check their own work and work independently to find their own mistakes and identify any misunderstandings or gaps in knowledge.

Geometry A Curriculum

Unit 1: Reasoning

Unit 2: Essential Skills: Algebraic

Unit 3: Triangle Properties

Unit 4: Polygon Properties

Unit 5: Coordinate Geometry

Unit 6: Constructions

Unit 7: Locus

Unit 8: Euclidean Foundations: Triangle Congruence

Unit 9: 3-D Solids

Geometry B Curriculum (year 2)

Unit 10: Transformational Geometry

Unit 11: Triangle Congruence (Formal Proofs)

Unit 12: Triangle Congruence/ Inequalities (Formal Proofs)

Unit 13: Essential Skills (Quadrilateral Properties/Analytical Proofs)

Unit 14: Quadrilateral Proofs

Unit 15: Similarity

Unit 16: Circles

Unit 17: Indirect Proofs

Unit 1: Reasoning

- 1. How does formal logic help you make decisions?
- 2. Why is it important to justify all the steps in the process of reasoning?

Time	Perform Ind	Content	Lessons	Vocabulary
September - October (4 weeks)	G.G.24	Determine the negation of a statement and establish its truth value.	 Logic Problem Solving Investigate how logic helps solve problems Statements 	Statement Conjunction Disjunction
	G.G.25	Know and apply the conditions under which a compound statement (conjunction, disjunction, conditional, biconditional) is true.	 Conjunctions/Disjunction 3: Compound Statements (how to write) Conditionals Biconditionals Inverse Converse Contrapositive 4: Compound Statements (Truth value) Conditionals Biconditionals Biconditionals Inverse Converse Contrapositive 	Conditional Biconditional Inverse Converse Contrapositive Logical Equivalence
	G.G.26	Identify and write the inverse, converse, and contrapositive of a given conditional statement and note the logical equivalences.	 5-6: Applications Solve problems using formal and informal logic 7: Assessment 	

Unit 2: Essential Skills

- 1. Using a variety of applications, how do you distinguish between calculating area and perimeter?
- 2. Why is it important to differentiate between linear and square units?

Time	Perform Ind	Content	Lessons	Vocabulary
October (3 – 4 weeks)	G.CN.6	Recognize and apply mathematics to situations in the outside world.	 Apply Perimeter and Area Formulas Identify and calculate using formulas 	Perimeter Area Circumference Radius Diameter
			 2: Apply Perimeter and Area Formulas Identify and calculate using formulas 	
			 3: Perimeter and Area Applications Identify the appropriate measurement 	
	G.PS.3	Use multiple representations to represent and explain problem situations (e.g., spatial, geometric, verbal, numeric, algebraic, and graphical representations).	 4: Reinforce equation solving skills Combine like terms Variables on both sides 	Variable Coefficient
	G.PS.5	Choose an effective approach to solve a problem from a variety of strategies (numeric, graphic, algebraic).	5: Applications 6: Assessment	

Unit 3: Triangle Properties

- 1. How does the classification of each triangle affect its properties?
- 2. How do civil engineers use knowledge of triangle properties?

Time	Perform Ind	Content	Lessons	Vocabulary
November (3 weeks)	G.G.30 G.G.31	Investigate, justify, and apply theorems about the sum of the measures of the angles of a triangle. Investigate, justify, and apply the isosceles triangle theorem and its converse.	 Classify Triangles Definitions Geo Sketchpad – Sum of Angles 	Equilateral Isosceles • Vertex Angle • Base Angle Scalene Acute Obtuse Right • Hypotenuse
	G.G.32	Investigate, justify, and apply theorems about geometric inequalities, using the exterior angle theorem.	 2: Exterior angles Exterior Angle Theorem Algebraic applications 	Exterior angle Remote interior angles
	G.G.33	Investigate, justify, and apply the triangle inequality theorem.	 3: Triangle Inequality Triangle inequality theorem Side/angle relationship 4: Right triangles 45,45,90 30,60,90 Altitude of an equilateral triangle 	
	G.G.34	Determine either the longest side of a triangle given the three angle measures or the largest angle given the lengths of three sides of a triangle.	5: Applications 6: Assessment	

Unit 4: Polygons

- 1. What are the unique properties and characteristics associated with geometric figures?
- 2. How are the properties of polygons used in art, music, and engineering?

Time	Perform Ind	Content	Lessons	Vocabulary
December (4 weeks)	G.G. 36	Investigate, justify, and apply theorems about the sum of the measures of the interior and exterior angles of polygons.	 Properties of Polygons Investigate and Identify types of polygons Sum of measures of 	Regular polygons
	G.G. 37	Investigate, justify, and apply theorems about each interior and exterior angle measure of regular polygons.	interior and exterior angles	
	G.G. 38	Investigate, justify, and apply theorems about parallelograms involving their angles, sides, and diagonals.	 2: Parallelograms Reinforce theorems about parallel lines cut by a transversal Investigate properties of parallelograms Algebraic applications 	Transversal Alternate exterior angles Alternate interior angles Corresponding Angles Opposite angles Diagonals Parallelogram
	G.G.39	Investigate, justify, and apply theorems about special parallelograms involving their angles, sides, and diagonals.	 3: Other parallelograms Investigate properties about rectangle, rhombus, square Algebraic applications 	Rhombus Rectangles Square
	G.G.40	Investigate, justify, and apply theorems about trapezoids involving their angles, sides, medians, and diagonals.	 4: Trapezoid Median Diagonals Isosceles Trapezoid Algebraic applications 	Trapezoid Diagonals Isosceles Median
	G.G.41	Justify that some quadrilaterals are parallelograms, rhombuses, rectangles, squares, or trapezoids.	5: Applications 6: Assessment	

Unit 5: Coordinate Geometry

- 1. What is the relationship between cartography and coordinate geometry?
- 2. How can mathematical formulas be used to validate properties of triangles and quadrilaterals?

Time	Perform Ind	Content	Lessons	Vocabulary
December – January (6 weeks)	G.G.62	Find the slope of a perpendicular line, given the equation of a line.	1: Investigate lines Parallel Perpendicular Slope 	Parallel Perpendicular Slope
	G.G.63	Determine whether two lines are parallel, perpendicular, or neither, given their equations.		
	G.G.64	Find the equation of a line given a point on the line and the equation of a line perpendicular to the given line.	2: Writing Equations (given EQ. of lines)Parallel/Perpendicular	Line segment Parabola System of equations
	G.G.65	Find the equation of a line, given a point on the line and the equation of a line parallel to the desired line.	 3: Writing equations (given points) Parallel/Perpendicular 	
	G.G.68	Find the equation of a line that is the perpendicular bisector of a line segment, given the endpoints of the line segment.	 4: Systems of Equations Graphing Solution of Quadratic/Linear System 	
	G.G.70	Solve systems of equations involving one linear equation and one quadratic equation graphically.	Assessment: Mid-Term Exam	
February (4 week)	G.G.67	Find the length of a line segment, given its endpoints.	5: Distance • Relate to Pythagorean Theorem • Formula	Midpoint Distance Ordinate Abscissa
	G.G.66	Find the midpoint of a line segment, given its endpoints.	6: Midpoint • Formula	

G.G69	Investigate, justify, and apply the properties of triangles and quadrilaterals in the coordinate plane, using the distance, midpoint, and slope formulas.	Analytical proofs 7: Apply appropriate techniques and formulas to determine measurable outcome • Parallel lines • Perpendicular lines • Midpoint • Median • Perpendicular Bisector • Altitude 8: Triangle proofs • Equilateral • Isosceles • Scalene • Right	Parallel lines Perpendicular lines Midpoint Median Perpendicular Bisector Altitude
		9: Quadrilateral proofs • Parallelogram	Parallelogram Rectangle Rhombus Square
		10-11: Special parallelogramsRectangleRhombusSquare	- 1921.0
G.G.40	Investigate, justify, and apply theorems about trapezoids involving their angles, sides, medians, and diagonals.	12: Trapezoids	Trapezoid
		13: Applications	
		14: Assessment	

Unit 6: Constructions

- 1. What geometric conclusions can be drawn from using constructions as your hypotheses?
- 2. What occupations may use the geometric principles of constructions?

Time	Perform Ind	Content	Lessons	Vocabulary
March (2 weeks)	G.G.17	Construct a bisector of a given angle using a straightedge and compass, and justify the construction.	1: Basic Skills • Segments • Angles • Triangles	Construction Straightedge Compass Point Arc Isosceles Scalene Equilateral
	G.G.18	Construct the perpendicular bisector of a given segment, using a straightedge and compass, and justify the construction.	 2: Bisecting Skills Segments Angles Perpendicular Bisectors 	Bisector Equivalent Perpendicular
	G.G.21	Investigate and apply the concurrence of medians, altitudes, angle bisectors, and perpendicular bisectors of triangles.		
	G.G.19	Construct lines parallel (or perpendicular) to a given line through a given point, using a straightedge and compass, and justify the construction.	 3-4: Applications Parallel Lines Concurrences in Triangles 	Parallel Centroid Circumcenter Incenter Orthocenter
	G.G.20	Construct an equilateral triangle, using a straightedge and compass, and justify the construction.	5: Assessment (Project)	

Unit 7: Locus

- 1. How are locus and constructions related?
- 2. How does locus lead to improving your ability to follow or give directions?

Time	Perform Ind	Content	Lessons	Vocabulary
March - April (3 weeks)	G.G.22	Solve problems using compound loci.	 5 Basic Theorems Investigation software Single Locus 	Locus Loci Radius Compound loci
	G.G.23	Graph and solve compound loci in the coordinate plane.	 2: Compound Locus Investigation software Real-life situations 3: Compound Locus Write Equations Coordinate plane 	Angle Bisectors Perpendicular Bisector
	G.G.71	Write the equation of a circle, given its center and radius or given the endpoints of a diameter.	4: Compound LocusCircle EquationsRelate to other locus	Median Altitude
	G.G.72	Write the equation of a circle given its graph (center is an ordered pair of integers and the radius is an integer).		
	G.G.73	Find the center and radius of a circle, given the equation of the circle in center-radius form.		
	G.G.74	Graph circles of the form $(x - h)^2 + (j - k)^2 = r^2$.	5: Applications of constructions • Word problems (Locus and Construction) 6: Assessment (Locus and Construction)	

Unit 8: Triangle Congruence - Foundations Theorem Writing

- 1. How are the properties, postulates and theorems used in proofs and mathematics?
- 2. What role does deductive reasoning play in solving real-life problems?

Time	Perform Ind	Content	Lessons	Vocabulary
April - May (4 weeks)	G.G.27	Write a proof arguing from a given hypothesis to a given conclusion.	1: Proof Argument Hypothesis Conclusion (Non-Geometric) 	Angles Hypothesis Postulates Conclusion
	G.G.35	Determine if two lines cut by a transversal are parallel, based on the measure of given pairs of angles formed by the transversal and the lines.	2: Apply reasoning to determine appropriate conclusions • Parallel lines • Perpendicular lines • Midpoint • Median • Perpendicular Bisector • Altitude	Premise
	G.G.28	Determine the congruence of two triangles by using one of the five congruence techniques (SSS, SAS, ASA, AAS, HL) given sufficient information about the sides and/or angles of two congruent angles.	Triangle congruence3: Investigate & IdentifyTheorems (GeometersSketchpad)• SSS• ASA• AAS• SAS4 - 5 Given a SituationDetermine WhetherTriangles are Congruent• Write and Explain(from teacher resources inDiscovering Geometry)6-7: Fill-in the blank proofs• Flowchart proof8: Applications9: Assessment	

Unit 9: 3-D Solids

- 1. How does the volume and surface area of a 3-D solid become a critical factor in business (marketing)?
- 2. How is volume derived from area?
- 3. When and why have these shapes been used in ancient history?

Time	Perform Ind	Content	Lessons	Vocabulary
May-June (4 weeks)	G.G.1	Know and apply that if a line is perpendicular to each of two intersecting lines at their point of intersection, then the line is perpendicular to the plane determined by them.	 Investigate planes Parallel lines/Planes Perpendicular lines/Planes Make paper models 	3-D solids Lateral edges Lateral faces
	G.G.2	Know and apply that through a given point there passes one and only one plane perpendicular to a given line.	 2: Prisms Parallel Edges (Properties) Volume/Altitude relations 	Planes Volume Altitude Prism Cube
	G.G.3	Know and apply that through a given point there passes one and only one line perpendicular to a given plane.	 3: Pyramids Properties/Theorems Volume Find slant height 	Pyramid
	G.G.4	Know and apply that two lines perpendicular to the same plane are coplanar.	4: CylinderPropertiesTheoremsVolume	Cylinder
	G.G.5	Know and apply that two planes are perpendicular to each other if and only if one plane contains a line perpendicular to the second plane.	 5: Right Circular Cones Properties Find slant height Theorems Volume 	Right circular cone
	G.G.6	Know and apply that if a line is perpendicular to a plane, then any line perpendicular to the given line at its point of intersection with the given plane is in the given plane.	6: Sphere • Properties • Theorems • S.A. Volume • Mixed Practice	Sphere Surface area
	G.G.7	Know and apply that if a line is perpendicular to a plane, then every plane containing the line is perpendicular to the given plane.	7: Cereal Project 8: Applications	Marketing
	G.G.8	Know and apply that if a plane intersects two parallel planes, then the intersection is two parallel lines.	9: Assessment Final Exam	

		-
	G.G.9	Know and apply that two planes perpendicular to the same line are parallel.
-	G.G.10	Know and apply that the lateral edges of a prism are congruent and parallel.
-	G.G.11	Know and apply that two prisms have equal volumes if their bases have equal areas and their altitudes are equal.
-	G.G.12	Know and apply that the volume of a prism is the product of the area of the base and the altitude.
	G.G.13	 Apply the properties of a regular pyramid, including: Lateral edges are congruent Lateral faces are congruent isosceles triangles Volume of a pyramid equals one-third the product of the area of the base and the altitude.
	G.G.14	Apply the properties of a cylinder, including:
-	G.G.15	Apply the properties of a right circular cone, including: • Lateral area equals one-half the product of the slant height and the circumference of its base • Volume is one-third the product of the area of its base and its altitude.

Geometry A Final

Geometry B Curriculum

Unit 10: Transformational Geometry

Unit 11: Triangle Congruence (Formal Proofs)

Unit 12: Triangle Congruence/Inequalities (Formal Proofs)

Unit 13: Essential Skills (Quadrilateral Properties/Analytical Proofs)

Unit 14: Quadrilateral Proofs

Unit 15: Similarity

Unit 16: Circles

Unit 17: Indirect Proofs

Unit 10: Transformational Geometry

- 1. What are the similarities and differences among transformations?
- 2. How are the principles of transformational geometry used in art, architecture and fashion?
- 3. What are the applications of transformations?
- 4. How are algebraic and geometric transformations related?

Time	Perform Ind	Content	Lessons	Vocabulary
September- October (5 weeks)	G.G.54	Define, investigate, justify, and apply isometries in the plane.	 Symmetry Investigating with on-line notes Vertical, horizontal line and point Paper-folding Reflection Symbolic Notation x=0, y=0, y=x, y=-x Intro. Isometries Direct Opposite 	Image Pre-image Symmetry Reflection
	G.G.55	Investigate, justify, and apply the properties that remain invariant under translations, rotations, reflections, and glide reflections.	 3: Rotation Symbol Notation Rotational symmetry Reflect in origin 90 degree, 180 degree Isometry 	Rotation Clockwise Counter-clockwise
	G.G.56	Identify specific isometries by observing orientation, numbers of invariant points, and/or parallelism.	4: TranslationsSymbolic NotationsIsometry	Translation
	G.G.57	Justify geometric relationships using transformational techniques.	 5: Compositions Without Notation Multi-step Isometry 6: Dilation/Similarities Symbolic Notations Origin Assessment Isometry 	Dilation Similarity
	G.G.58	Define, investigate, justify and apply similarities.		

G.G.59	Investigate, justify, and apply the properties that remain invariant under similarities.	7: Glide ReflectionsSymbolic NotationsIsometry	Glide Reflection
G.G.60	Identify specific similarities by observing orientation, numbers of invariant points, and/or parallelism.	8: CompostionsNotationInvestigate all Transformations	
G.G.61	Investigate, justify, and apply the analytical representations for translations, rotations about the origin of 90° and 180°, reflections over the lines $x = 0$, $y = 0$, and $y = x$, and dilations centered at the origin.	9: Applications	
	, in the second s	10: Assessment	
		Note: Investigate software used throughout lessons	

Unit 11: Euclidean Proofs: Informal/Formal Triangle Congruence

- 1. How are the properties, postulates and theorems used in proofs and mathematics?
- 2. How do civil engineers use knowledge of triangle properties?

Time	Perform Ind	Content	Lessons	Vocabulary
October- November (5 weeks)	G.G.30	Investigate, justify, and apply theorems about the sum of the measures of the angles of a triangle.	 Properties of Triangles Sum of angles Side/angle relationship Exterior angles Triangle inequalities 	Angles Hypothesis Postulates Conclusion Inverse Converse
	G.G.33	Investigate, justify, and apply the triangle inequality theorem.	 2: Theorem Decisions Definitions Fill-in the blank proofs 	Exterior angle
	G.G.34	Determine either the longest side of a triangle given the three angle measures or the largest angle given the lengths of three sides of a triangle.	3: Theorem DecisionsPostulatesFill-in the blank proofs	
	G.G.28	Determine the congruence of two triangles by using one of the five congruence techniques (SSS, SAS, ASA, AAS, HL) given sufficient information about the sides and/or angles of two congruent angles.	 4: Triangle congruence Theorems (Identify) SSS ASA AAS SAS 	Postulate Reflexive
	G.G.35	Determine if two lines cut by a transversal are parallel, based on the measure of given pairs of angles formed by the transversal and the lines.	 5-6: Triangle Congruence Proofs Hypothesis to Conclusion Flow Chart proofs 	
	G.G.48	Investigate, justify, and apply the Pythagorean theorem and its converse.	 7: Triangle Congruence Proofs Transition to 2-column proofs 8: Triangle Congruence Proofs 2-column proofs 9: Triangle Congruence Proofs 2-column proofs 	

	10-11: Applications More triangle proofs 	
	12: Assessment:	

Unit 12: Euclidean Proofs: Informal/Formal Triangle Congruence and Inequality

- 1. What is the relationship between congruence and inequality?
- 2. How do proofs train your mind to evaluate real-life problems?

Time	Perform Ind	Content	Lessons	Vocabulary
November- December (6 weeks)	G.G.30	Investigate, justify, and apply theorems about the sum of the measures of the angles of a triangle.	Triangle congruence1: CPCTC Proofs2: Other TriangleTheorems• HL Theorem3: Other TriangleTheorems• Isosceles/Converse	Corresponding parts Hypotenuse Leg Isosceles Converse Base angles
	G.G.31	Investigate, justify, and apply the isosceles triangle theorem and its converse.	4-5: OverlappingTrianglesApply theorems	
	G.G.32	Investigate, justify, and apply theorems about geometric inequalities, using the exterior angle theorem.	Triangle inequalities 6-7: Inequality postulates • Proofs	Altitude Median Adjacent Complementary
	G.G.29	Identify corresponding parts of congruent triangles.	 8: Exterior angle theorem Proofs 9-10: Applications 11: Assessment 	Supplementary Exterior angle

Unit 13: Essential Skills: Quadrilateral Properties/Analytical Proofs

Essential Questions:

1. What are the quadrilaterals we see around us and how does knowing their properties help us?

Time	Perform Ind	Content	Lessons	Vocabulary
December - January (3 weeks)	G.G.63	Determine whether two lines are parallel, perpendicular, or neither, given their equations.	1: Quadrilateral Properties Parallelogram Rectangle Rhombus Square Trapezoid Algebra Applications	Parallel Perpendicular
			2: Practice CalculationsDistanceMidpointSlope	Line segment Midpoint Distance
	G.G69	Investigate, justify, and apply the properties of triangles and quadrilaterals in the coordinate plane, using the distance, midpoint, and slope formulas.	How to prove congruence, medians, altitudes, parallel, perpendicular, etc.	Ordinate Abscissa
	G.G.64	Find the equation of a line given a point on the line and the equation of a line perpendicular to the given line.	3-4: Informal proofs Quadrilaterals 	Isosceles Equilateral Scalene Right
	G.G.40	Investigate, justify, and apply theorems about trapezoids involving their angles, sides, medians, and diagonals.	5: Applications 6: Assessment Midterm Exam	Parallelogram Rectangle Rhombus Square Trapezoid
	G.G.66	Find the midpoint of a line segment, given its endpoints.		
	G.G.67	Find the length of a line segment, given its endpoints.		

Unit 14: Euclidean Proofs: Informal/Formal Polygons

- 1. What are the unique properties and characteristics associated with geometric figures?
- 2. How are the properties of polygons used in art, music, and engineering?

Time	Perform Ind	Content	Lessons	Vocabulary
February (3 weeks)	G.G.41	Justify that some quadrilaterals are parallelograms, rhombuses, rectangles, squares, or trapezoids.	 Parallelogram proofs Given a parallelogram prove congruent triangles 	Regular polygons Transversal Alternate exterior angles Alternate interior angles Corresponding angles
	G.G.35	Determine if two lines cut by a transversal are parallel, based on the measure of given pairs of angles formed by the transversal and the lines.	 2: Parallelogram Proof Prove quadrilateral is a parallelogram 3: Parallelogram Proof Mixed parallelogram 	Rhombus Rectangles Parallelogram Square
	G.G.39	Investigate, justify, and apply theorems about special parallelograms involving their angles, sides, and diagonals	4: Other parallelogram Proofs	Trapezoid Diagonals Isosceles
	G.G.40	Investigate, justify, and apply theorems about trapezoids involving their angles, sides, medians, and diagonals.	 5: Trapezoid Proofs Median Diagonals Isosceles Trapezoid 6: Applications 7: Assessment 	

Unit 15: Euclidean Proofs: Informal/Formal Similarity of Triangles and its Applications

- 1. What are the properties and theorems that connect multiple geometry figures (e.g. congruence, similarity, etc) to real world problems?
- 2. How can similarity foster conclusions about mean proportionality?

Time	Perform Ind	Content	Lessons	Vocabulary
February- March (4 weeks)	G.G. 44	Establish similarity of triangles using the following theorems: AA, SAS, and SSS.	1: Investigate Theorems • AA • Basic similar proofs	Similarity
	G.G.45	Investigate, justify, and apply theorems about similar triangles.	 2-3: Similarities of triangles Sides are in proportion Proportion definition 	Proportional
	G.G.42	Investigate, justify, and apply theorems about geometric relationships, based on the properties of the line segment joining the midpoints of two sides of the triangle.	 4:Triangle Median/Centroid theorems Investigate theorems Algebraic applications 	Median Centroid
	G.G.43	Investigate, justify, and apply theorems about the centroid of a triangle, dividing each median into segments whose lengths are in the ratio 2:1.	5:Triangle Median/Centroid theorems • Investigate theorems • Proofs	Altitude Hypotenuse
	G.G.46	Investigate, justify, and apply theorems about proportional relationships among the segments of the sides of the triangle, given one or more lines of the sides of the triangle, given one or more lines parallel to one side of a triangle and intersecting the other two sides of the triangle.	 6: Mean proportionality Investigate/special right triangles Introduce theorem 7: Mean proportionality Algebra applications 	
	G.G.47	Investigate, justify, and apply theorems about mean proportionality:altitude to the hypotenuse of a right triangle .	8: Applications 9: Assessment	

Unit 16: Euclidean Proofs: Informal/Formal Circles

- 1. How can angle and segment theorems of circles be directly applied to real world applications?
- 2. How are the similarity triangle theorems applied to proofs about circles?

Time	Perform Ind	Content	Lessons	Vocabulary
March-May (6 weeks)	G.G. 49	Investigate, justify and apply theorems regarding chords of a circle.	 1: Arcs and Angles Basic vocabulary Central angles Inscribed angles 	Radius Diameter Angle Vertex Central angles Arc
	G.G.50	Investigate, justify, and apply theorems about tangent lines to a circle.	 2: Chord Theorems Investigate arc measures Parallel chord theorems 3: Angles formed by Chords Investigate theorems Algebraic applications 4: Tangents and Secants Investigate theorems Algebraic applications 	Minor arc Major arc Chord
	G.G.51	Investigate, justify, and apply theorems about the arcs determined by the rays of angles formed by two lines intersecting a circle.		
	G.G.52	Investigate, justify, and apply theorems about arcs of a circle cut by two parallel lines.	 5: Practice finding all angle measures 6: Measures of chord segments Investigate theorems Algebraic applications 7: Measures of Tangents and Secants segments Investigate theorems 	Tangent Secant

G.G.53	Investigate, justify, and apply theorems regarding segments intersected by a circle.	8: Arc lengthAlgebraic applicationsWord problems	Circumference Sector Minor segment
		 9: Area of a sector Algebraic applications Word problems 	
		 10: Area of a minor segment Algebraic applications Review 30,60,90 Word problems 	
		11: Circle proofs	
		12: Circle proofs	
		13: Applications	

Unit 17: Euclidean Proofs: Informal/Formal Indirect Proofs

Essential Questions:

1: How does understanding indirect reasoning enhance our ability to think critically?

2: How is indirect reasoning used in a court of law?

Time	Perform Ind	Content	Lessons	Vocabulary
May (3 weeks)	G.G.27	Write a proof arguing from a given hypothesis to a given conclusion.	 1: Indirect Reasoning Introduction Activity to show indirect reasoning Non-geometric examples 	Angles Hypothesis Postulates Conclusion Inverse Converse
	G.G.33	Investigate, justify, and apply the triangle inequality theorem.	 Indirect Proofs Fill-in the blank proofs 	Exterior angle
	G.G.34	Determine either the longest side of a triangle given the three angle measures or the largest angle given the lengths of three sides of a triangle.	 3-4: Indirect Proofs proofs 5: Applications 6: Assessment Geometry Regents 	
	G.G.31	Investigate, justify, and apply the isosceles triangle theorem and its converse.		